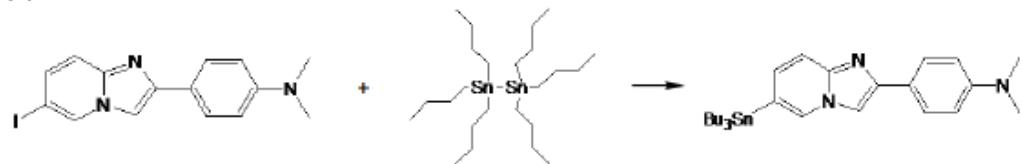
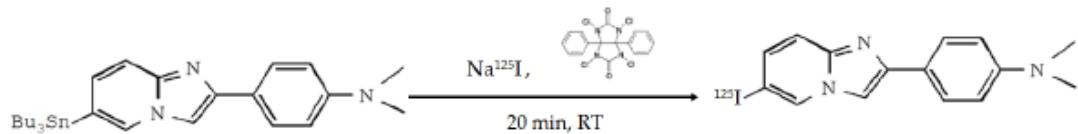


田育彰 教授


健康科學學院/醫學影像暨放射學系

本研究以碘原法 (Iodogen method) 將 IMPY (2-(4'-dimethylaminophenyl)-6-iodo-imidazo[1,2-a]pyridine) 高效率標記上放射性碘 ^{125}I ，達到 96.52% 的放射化學產率並展現優異穩定性，證明此方法為最佳標記策略。由起始物合成 IMPY 借由 Sn 取代形成中間產物 SnMPY，再將同位素碘標誌成為 ^{125}I -IMPY。研究進一步探討 ^{125}I -IMPY 於神經母細胞瘤 (SH-SY5Y) 中的追蹤與治療潛力，結果顯示其細胞攝取率顯著高於正常細胞 (HaCaT)，且隨劑量增加，神經母細胞瘤細胞活力顯著下降、細胞凋亡比例提升，並伴隨 DNA 損傷標誌 γ -H2AX 表現上升。綜合以上， ^{125}I -IMPY 不僅具備優異的腫瘤追蹤能力，也展現放射治療效應，具有成為神經母細胞瘤潛在 theranostic (診療合一) 放射性藥物的發展價值。


(1) IMPLY:

(2) SnMPY:

(3) Iodogen method:

【具體成果】

● 學術成就

高被引用論文

1 **Hydrogels: Properties and Applications in Biomedicine**

Ho, TC; Chang, CC; (...); Tyan, YC

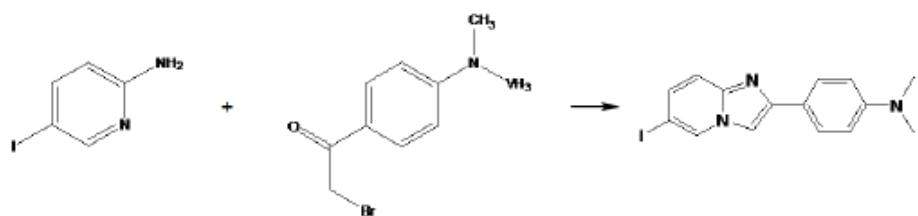
May 2022 | MOLECULES ▾ 27 (9)

Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as ... Show more ▾

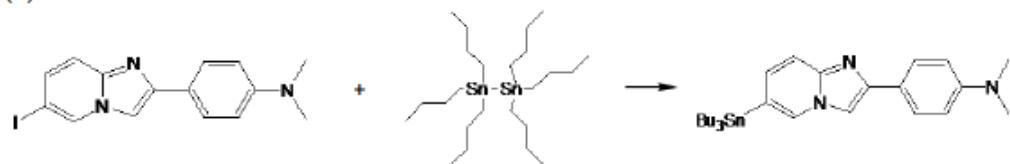
Free Full Text from Publisher View Full Text on ProQuest ...

● 獲獎

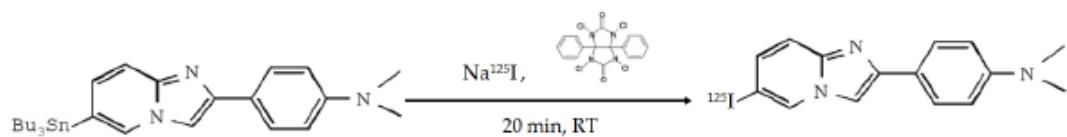
1. 2025 年第 18 屆醫學影像暨放射科學國際研討會海報論文競賽第二名：
Development the potential of bioactive peptides as regenerative medicine therapies: Applications in the Retinal Ganglion Cells Protection and Optic Nerve Regeneration.
2. 中華民國核醫學學會 2025 年會暨國際學術研討會口頭論文佳作：
放射性碘 125 標誌 GPC-3 抗體奈米微胞作為肝癌標靶治療之藥物制放研究


【研究團隊】

研究聯繫 Email : yctyan@kmu.edu.tw



This study labeled IMPY (2-(4'-dimethylaminophenyl)-6-iodo-imidazo[1,2-a]pyridine) with radioactive iodine-125 using the Iodogen method, achieving a high radiochemical yield of 96.52% and excellent stability, confirming this approach as the optimal labeling strategy. IMPY was synthesized from the starting material via a tin-substitution reaction to form the intermediate compound SnMPY, followed by radioiodination with iodine-125 to yield ^{125}I -IMPY. The investigation further evaluated the tracking and therapeutic potential of ^{125}I -IMPY in neuroblastoma (SH-SY5Y) cells. The results demonstrated significantly higher cellular uptake in neuroblastoma cells compared to normal HaCaT cells, along with dose-dependent reductions in cell viability, increased apoptosis, and elevated expression of the DNA damage marker γ -H2AX. In summary, ^{125}I -IMPY not only exhibits strong tumor-tracking capability but also demonstrates radiotherapeutic effects, indicating its promising potential as a theranostic radiopharmaceutical for neuroblastoma.


(1) IMPY:

(2) SnMPY:

(3) Iodogen method:

【Concrete Results】

● Awards

1. **Second Place Award, Poster Presentation Competition,**

2025 INTERNATIONAL SYMPOSIUM ON MEDICAL IMAGING AND RADIOLOGICAL SCIENCES

Title: *Development of the Therapeutic Potential of Bioactive Peptides as Regenerative Medicine Therapies: Applications in Retinal Ganglion Cell Protection and Optic Nerve Regeneration.*

2. **Outstanding Oral Presentation Award,**

2025 ANNUAL CONFERENCE OF SOCIETY OF NUCLEAR MEDICINE

Title: *Development of radioactive iodine-125-labeled GPC-3 antibody nanocells as targeted therapy for liver cancer*

【Research Team】

Contact Email: yctyan@kmu.edu.tw